

ENERGY PRINCIPLE

Concept of the Hydraulic and Energy Grade Lines

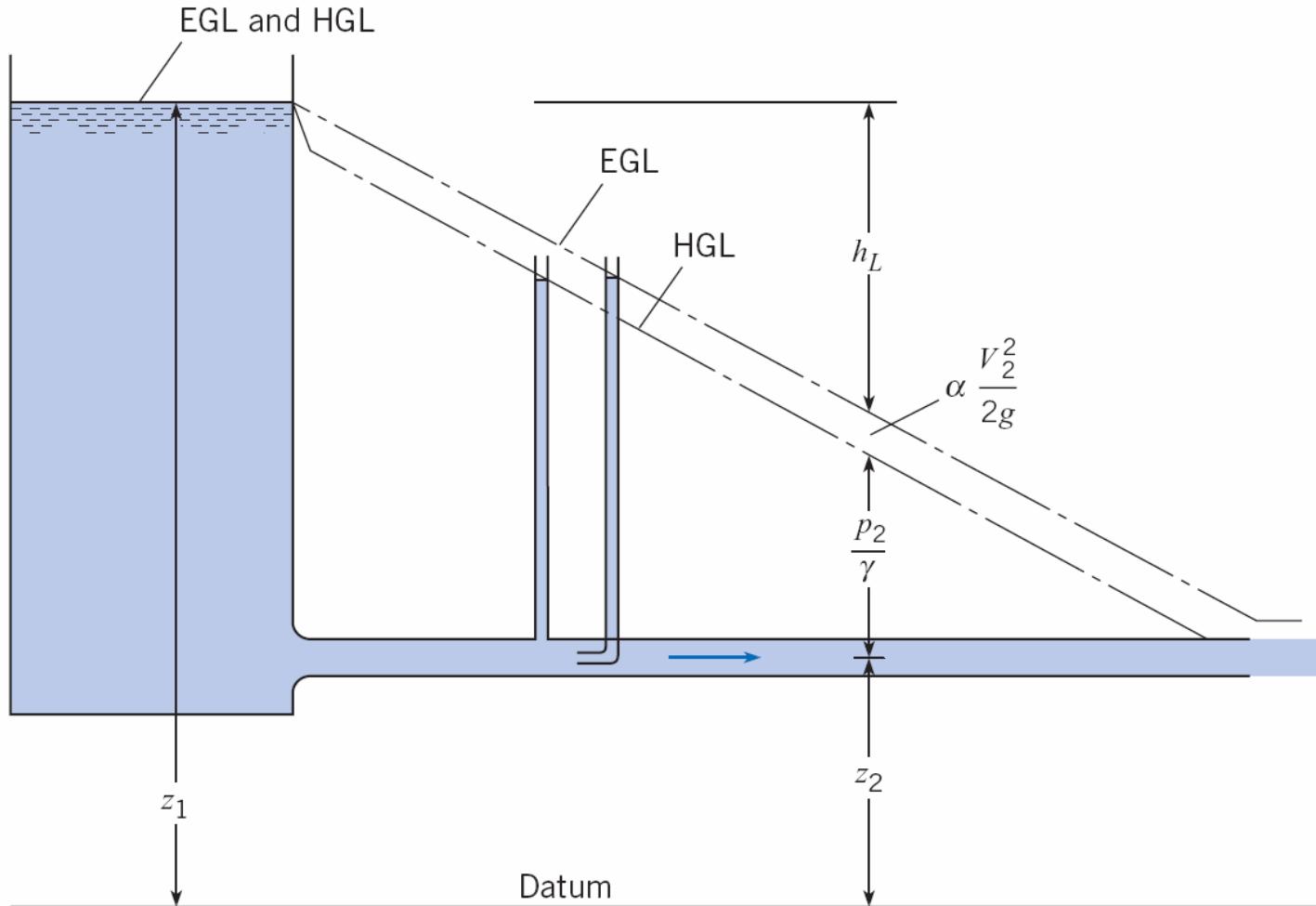
$$\left(h_P + \frac{p_1}{\rho g} + z_1 + \alpha_1 \frac{V_1^2}{2g} \right)_{\text{Mech. part}} = \left(h_T + \frac{p_2}{\rho g} + z_2 + \alpha_2 \frac{V_2^2}{2g} \right)_{\text{Mech. part}} + h_{\text{Loss}}$$

1. In general the left hand side of the equation above represent

the pump $[h_p]$, fluid head (piezometric head) $\left[\frac{p_1}{\gamma} + z_1 \right]$
, and the flow work $\left[\alpha_1 \frac{V_1^2}{2g} \right]$ at flow upstream..

2. In general the right hand side of the equation above represent

the turbine (h_T) , fluid head (piezometric head) $\left[\frac{p_2}{\gamma} + z_2 \right]$
, the flow work $\left[\alpha_2 \frac{V_2^2}{2g} \right]$ and head loss $[h_{\text{Loss}}]$ at flow downstream..



By analyzing the Figure Above, the followings can be deduced:

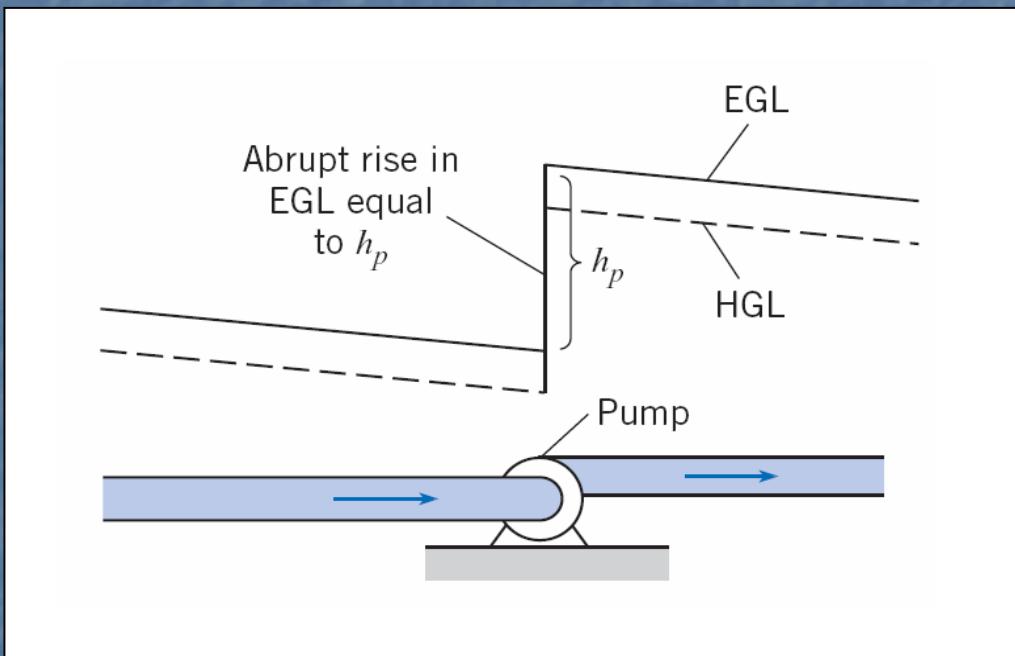
ENERGY PRINCIPLE

1. The height of the $\left[\frac{p}{\gamma} \right]$ line is called the (Hydraulic Grade Line (HGL))
2. The height of the $\left[\frac{p}{\gamma} + \alpha \frac{V^2}{2g} \right]$ line is called the (Energy Grade Line (EGL))
3. EGL is above HGL by a distance $\left[\alpha \frac{V^2}{2g} \right]$
4. For a lake or a reservoir, EGL and HGL will Coincide because the velocity is zero.
5. Head loss for a flow in a pipe as shown in the Figure always means that the EGL will slope downwards in the direction of flow.
6. For a steady flow in a pipe where the diameter, roughness and shape is the same, the slope $\left[\frac{\Delta h}{\Delta L} \right]$ is constant.

ENERGY PRINCIPLE

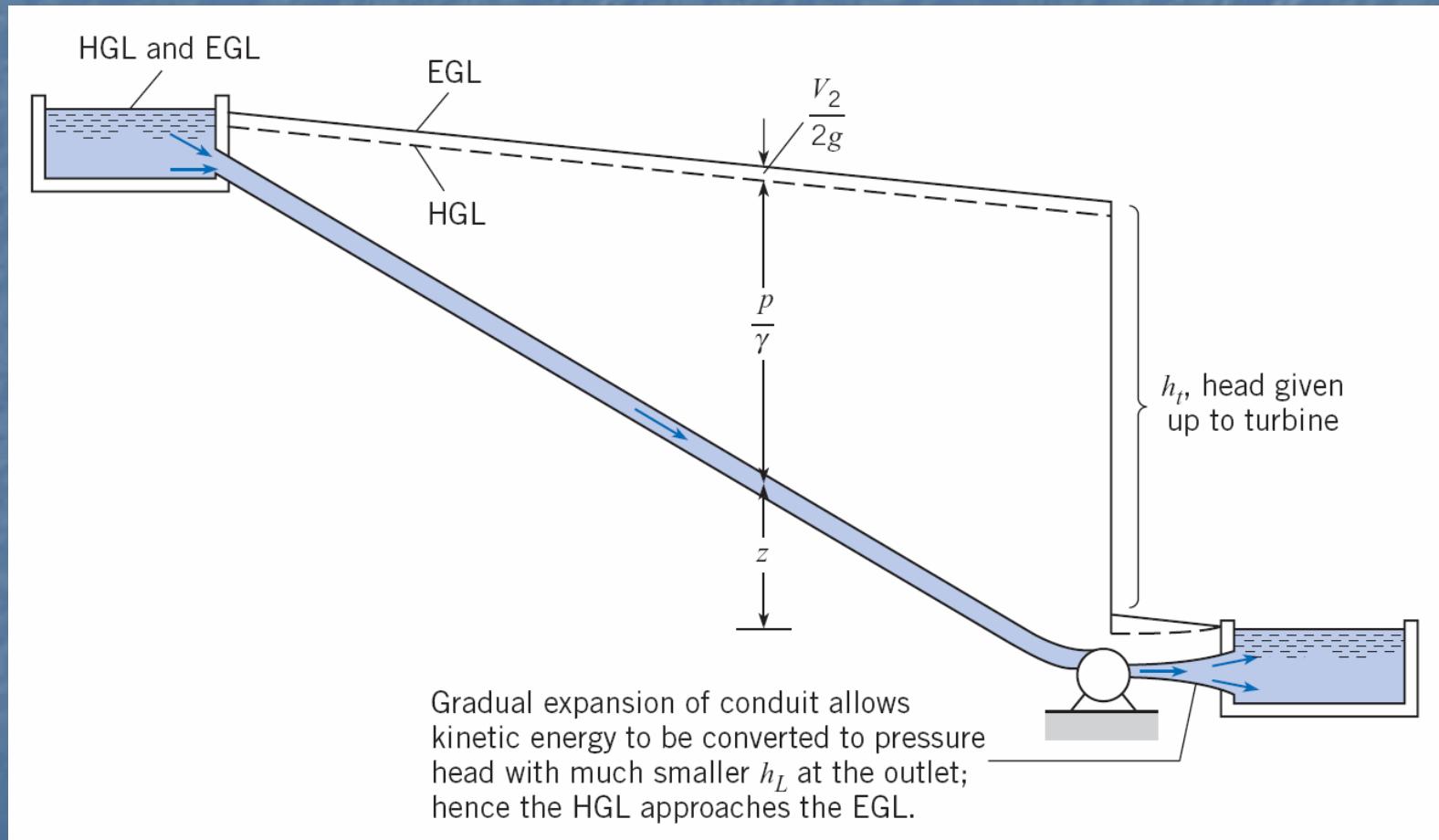
Also, the lines of HGL and EGL are drawn for the followings cases:

1. An exception to point (5) when a pump supplies energy to flow as shown in **Fig. below.**



ENERGY PRINCIPLE

2. An exception to point (5) when a turbine extracts energy from the flow as shown in Fig. below.

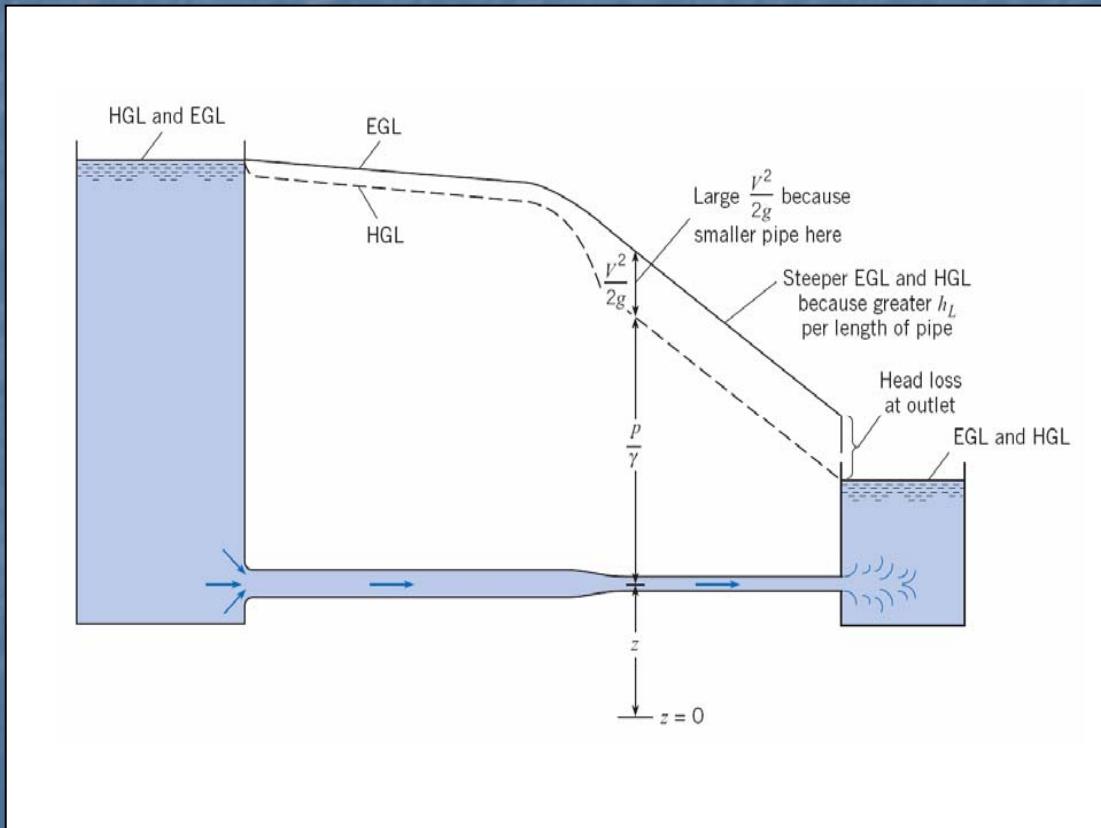


ENERGY PRINCIPLE

3. If the outlet to the reservoir is an abrupt expansion as shown

in Fig. below, all the kinetic energy is lost. Thus the EGL

drops an amount $\left[\alpha \frac{V^2}{2g} \right]$ at the outlet.



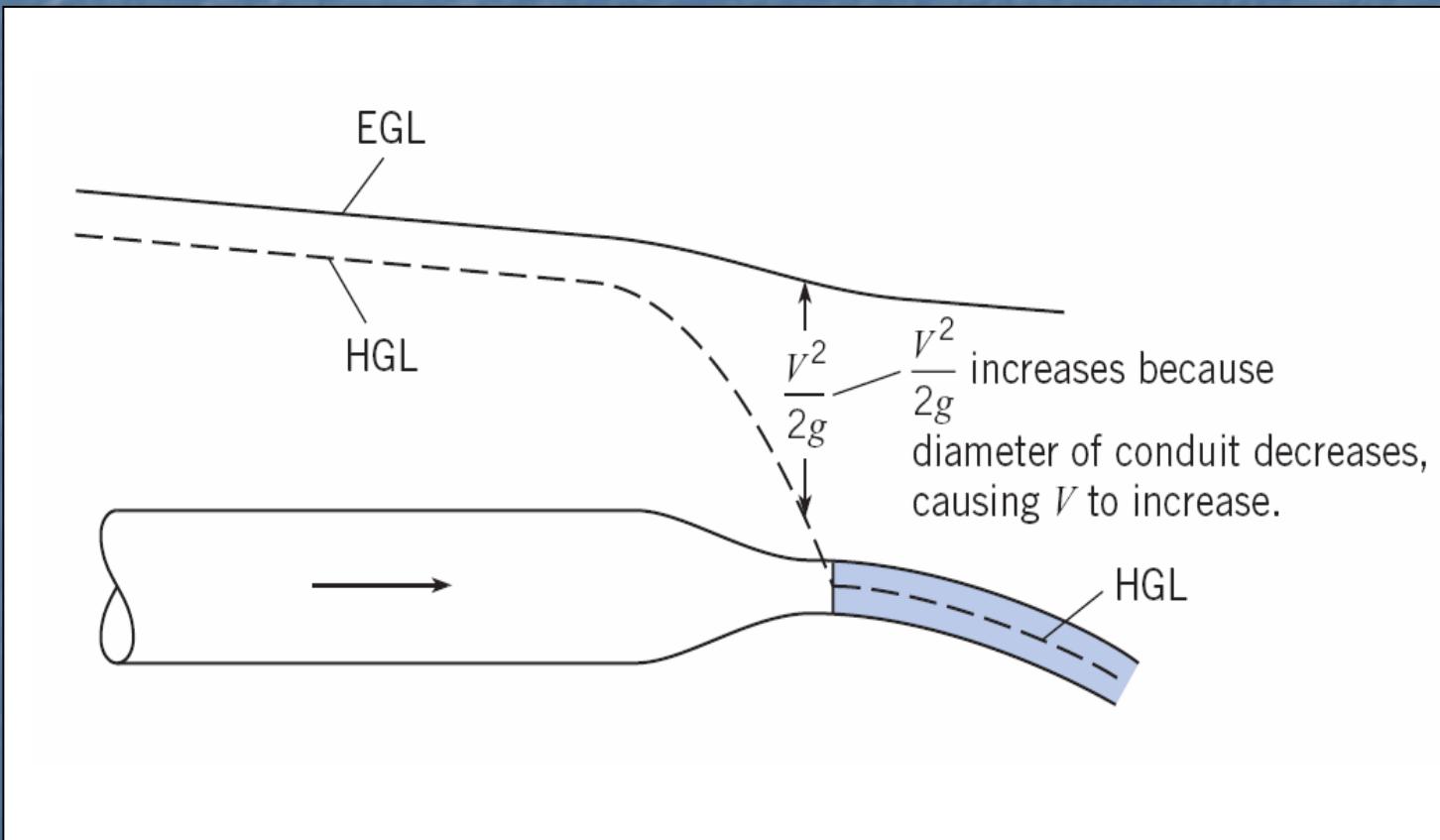
ENERGY PRINCIPLE

4. If the flow passage changes diameter such as in a nozzle, the velocity

changes and hence the distance between the EGL and HGL

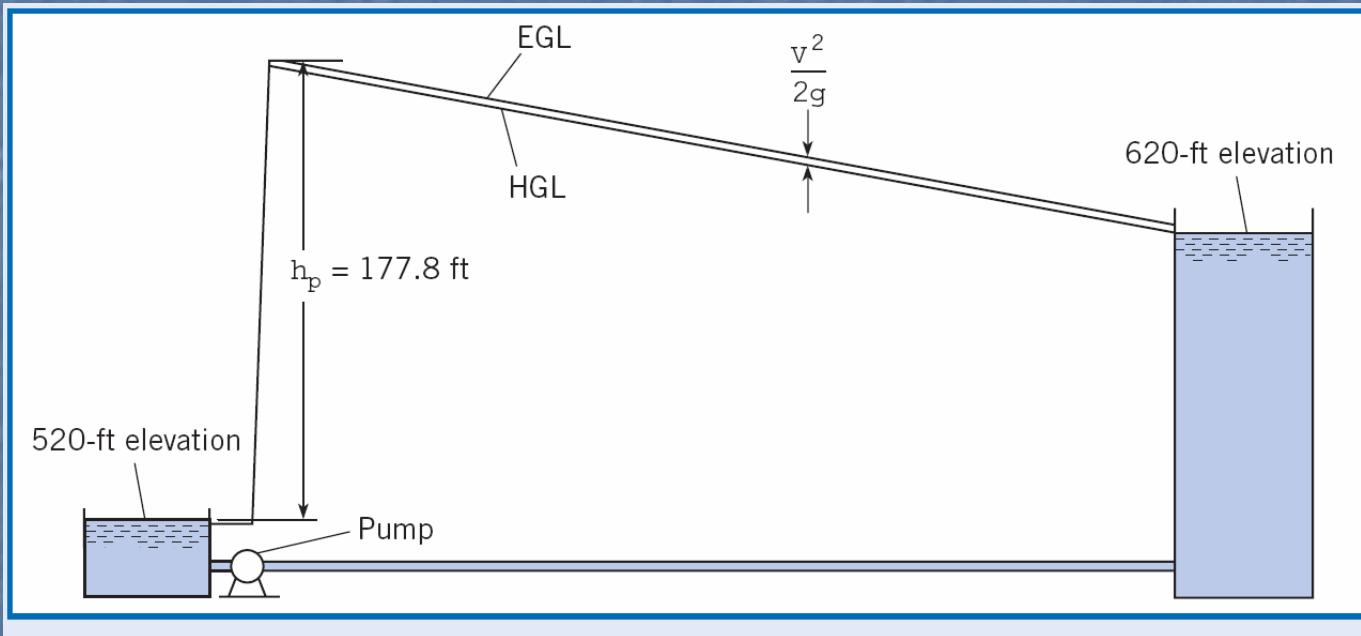
$$\left[\alpha \frac{V^2}{2g} \right]$$

will change as shown in Fig. below, at the outlet.



ENERGY PRINCIPLE

Example (7.7)



Given:

$$L_{\text{pipe}} = 5000 \text{ ft}, D_{\text{pipe}} = 1 \text{ ft}, \dot{Q} = 7.85 \text{ ft}^3/\text{s}, h_{\text{Loss}} = \left[0.01 \left(\frac{L}{D} \right) \left(\frac{V^2}{2g} \right) \right]$$

Find:

h_p , \dot{W}_p and draw the HGL and EGL?

ENERGY PRINCIPLE

Solution

Applying the energy equation between point 1 & 2

$$\left(h_p + \frac{p_1}{\rho g} + z_1 + \alpha_1 \frac{V_1^2}{2g} \right)_{\text{Mech. part}} = \left(h_T + \frac{p_2}{\rho g} + z_2 + \alpha_2 \frac{V_2^2}{2g} \right)_{\text{Mech. part}} + h_{\text{Loss}}$$

Since $V_1 = V_2 = 0$, $p_1 = p_2 = 0$, $h_T = 0$, $\alpha_1 = \alpha_2 = 1$

i.e. Eqn above reduces to

$$(h_p + z_1)_{\text{Mech. part}} = (z_2)_{\text{Mech. part}} + h_{\text{Loss}} \quad z_1 = 520 \text{ ft}, z_2 = 620 \text{ ft}$$

$$V_{\text{pipe}} = \frac{\dot{Q}}{A} = 10 \text{ ft/s} \quad h_{\text{Loss}} = 0.01 \times \frac{5000 \times 10^2}{1 \times 2 \times 9.81} = 0.01 \text{ ft}$$

$$h_p = 620 - 520 + 0.01 = 178 \text{ ft}$$

$$(\dot{W}_p)_{hp} = \gamma \dot{Q} h_p / 550 = 158 \text{ hp}$$

END OF LECTURE

(6)